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Abs t rac t  

The extended quaternion algebra allows two forms for the Dirac equation mass term. We 
show that the definition of angular momentum in the relativistic hydrogen atom suggests 
that either is physically allowed, but not a combination of both. A combination of both 
mass terms could still Nve the usual mass term in the nonrelativistic limit as is shown. 

t .  In t roduc t ion  

We have recently shown that rest mass in nature causes the natural number 
system, complex quaternions, to be generalized from {eu, ieu} ,  l~ = O, I ,  2, 3, 
to {eu, ieu, f u ,  tfu }. This also naturally suggests the generalization of Lorentz 
symmetry from a 6 parameter group to a 10 parameter group. The reader is 
referred to our earlier papers for notat ion and details (Edmonds, 1974). Unless 
the Lorentz group is extended, there appear to be two equivalent extensions 
of the Weyl equation, P~a = 0, to the Dirac equation, P~a = m(?)~a.  In fact a 
combinat ion  of these extensions is Lorentz covariant and so it becomes 
ambiguous which should be associated with rest mass, or even if both might 
contribute somehow. If one were dominate, the other could be treated as a 
perturbation and would affect the hydrogen energy levels, in principle. We, 
therefore, look at this possibility. 

2. Dual  Mass in the  Dirac Equat ion 

The natural hypercomplex number system for relativistic physics with rest 
mass, {eu, ie u, f u ,  ifu }, along with the Lorentz group, {LL  ~ = 1 eo,  L"  = L ~ = Le  }, 
allows us to write two mass terms in the Dirac equation 

[PU(eu) - m l ( i f o )  - mz(fo) l  ff~ = 0 (2.1) 
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Under a Lorentz transformation, P ~ P '  = L t PL ; ( i f  o ) ~ ( i f  o ) ' = L t ( i f  o)L = 
L*L' t^( i fo) ,  when L" = L ' ;  and (fo) -+ (fo) '  = L t ( f o ) L  = ( fo)  L ~L = (fo), for 
any L. Therefore, the m I and m 2 terms are both Lorentz invariant, when 
[ ] - + L t  [ ]L ,  ~a -+ ~'a = L ' ¢ a ,  in equation (2.1). 

We obtain the Klein-Gordon equation by forming 

[ P ^ + m l ( i f o ) + m 2 ( f o ) ]  [ P -  m ~ ( i f o ) - m 2 ( f o ) ] ¢ a  = 0  (2.2) 

which gives, after expansion, 

[ P ^ P - ( m l  2 + m22)(eo)]t~a = O, M 2 =-- ma 2 +m22, P ^ P =  PUPu(eo) (2.3) 

The nonrelativistic limit is obtained from equation (2.3), so only M would 
appear in such low speed quantum physics! We, therefore, should turn to the 
relativistic hydrogen atom to see what effects ml and mz have on the energy 
spectrum. (The usual electron rest mass, measured in classical nonrelativistic 
e /m  experiments is actually elM.)  

We note first that a free particle at rest has the equation 

[pO _ m l ( i f o  ) _ mz(fo)  ] @a = 0 (2.4) 

Since ( i fo)  and (fo) anticommute, though both commute with spin, (iea), we  
cannot chose ~0 a to be an eigenstate of both. Note that either would be the 
particle/antiparticle operator: (fo) (fo) = (eo), ( i fo) ( i fo)  = (eo), ( f o ) ~a  = +1 Ca 
~ P ° ~ a  = +m2~a; ( fo )~a  = - 1  ~a ~ P°t~a = - m 2 ~ a ,  etc. This would seem to 
indicate that m r or m z is not  physical, but which? For the free particle we 
can show that they are basically equivalent. However, dropping the Lorentz 
restriction L A = L v ' puts (ifo) and (fo) in very different perspectives. Now 
(fo) is still invariant under L L "  = le o but (i fo) becomes the fourth space 
dimension: P = PU(eu)  + p4( i fo ) .  We have previously speculated (Edmonds, 
1975a) that this means that P4t~ a = - m q l a ,  so that the observed rest mass in 
three-space is associated with partons moving in four-space. We also considered 
(Edmonds, 1975b) p s  Ca = - m $ a ,  where PS(fo)  is, under L L  A = le o, a frame 
invariant coordinate. The natural candidate for this is cosmic time. The back- 
ground radiation selects a natural rest frame (the isotropy frame). Locally this 
is preferred over all moving Lorentz frames and so its time coordinate is 
singled out as special. (Only the 15 parameter Conformal group, L L  -1 = le o 
(determinant o f L  v ~ 0), mixes (re) with the other five coordinates.) 

Associating mass with cosmic time (ps )  and also considering p4  as a physical 
but subnuclear (cyclic) coordinate, opens some interesting questions for CP 
and T symmetry. These are presently disturbing issues in physics, so this line 
of  attack may be useful. 

3. Mass Term Select ion and Angular M o m e n t u m  

The above discussion indicates that m 1 = 0 or m 2 = 0 in the Dirac equation, 
restricted to 3-space. We now consider each possibility in the hydrogen atom. 

The Dirac equation in Hamiltonian form gives 

[PU(e u) - eAU(eu)  - ma (ifo) - mz(f0)]  ~a = 0 (3.1) 



MASS TERM VARIATIONS IN THE DIRAC HYDROGEN ATOM 433 

or 

P°(eo)~a = [ - -Pk(eD + eAU(e~,) + ml (ifo) + m2( fo ) l  ~ .  - H~a 

The Coulomb potential gives eA ° = V(r), A k = 0. By analogy with basis vectors, 
we define "spherical" hypercomplex numbers 

xXek x t x 3 e l  - - x 2 x 3 e 2  _ [ (x l )  2 + (x2)2]e3  
e r --  , eo --  r r [ (x l )  e + (x2)2] 1/2 

- - x 2 e t  + x l e 2  f _ ~  [ - - X k X k ]  112, 
% - [(xl)2 + (x2)211/2' 

eoe¢~ = (ier) = -e~eo , eoer = (ieo ) = -ere~, 

ereo = (i%) = -eo er 

e r --er, etc. 

(3.2) 

(3.3) 

But J does not commute with H, so one defines 

fi 
K ~-J - ~ (eo) = K `t  = K°(eo) + Kl(iel) (3.5) 

where - h / 2  is chosen so that K anticommutes with e r. Returning to Pke k we 
can now write 

P ~ e k = - e r  [ = - e r [  3 i h + i h r  ~ r - U  l 

r [2 ~ r - i  + =er -ih~r-i--+ir 

(3.6) 

It can be shown that K commutes with O/Or and 1/r, but anticommutes with 
e r (and this is why J is not useful in relativistic physics). Now notice the mass 
terms, (ifo) and (fo)- Because K = K ' ? ,  it commutes w4th (f0). Because it also 
has no ( f )  parts, K ~ = K v, it commutes with (ifo). Since er is made of  {ek }, it 

The standard trick to getting H in "spherical" form is to note that 

( r - ~ )  - x  [½(x~p + W x ) +  ½(x~ P _ P^x)] pke k=_P= --xx ~ p = _ ~  

= -e_~r [~(x^P + PAx) - i ( ~ )  (xAe - P~x)] 

For reasons related to the nonrelativistic limit, we define 

d = _  [ x - p _ p ^ x ]  =_iJk(iek), dl = ( x 2 p 3  _ x 3 p 2 ) ( e o ) _ i  (iel) 
2 

(3.4) 
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anticommutes with (fo) and (ifo). Therefore, either ( fo )K or (ifo)K will serve 
as the angular momentum operator. No preference for ml or m 2 has emerged. 
We do see that both ml( i fo  ) and m2(fo)  cannot appear in the hydrogen atom 
without disrupting the angular momentum operator commutation with H. 
This is because (fo)  and (ifo) anticommute. 

Notice that either [(fo)K] or [(ifo)K ] , of the form {fo, i lk} or {i fo, fk},  
is the physical angular momentum operator, not  K or J,  which both involve 
(eo, iek}. We next look at the internal hypercomptex structure of (fo)K and 
(ifo)K. We can use PJx k = xkP  j - ih6 kj to rewrite K in the form 

i 
K = h e o - - ~  [ ( x P ) - (  ) t ] ,  x ? = x , P  ? =P,  (xP) ? =xkPJeje k (3.7) 

We now see that (ifo)K is going to give (ifo)xP = xk(ifk)Ple], whereas ( fo)K 
is going to give (fo)xP = x~(fk)Pie  i. Therefore, if we write the angular momen- 
tum operator in compact hypercomplex number form, we see that x = x k ( f k )  
or xk(i fk) ,  depending upon the choice of  m(fo)  or m(ifo). 

The angular momentum operator shows that P and x should be written in 
different hypercomplex forms, due to rest mass. The natural question to ask 
next is whether x k ( f k )  or xk(i fk)  can be distinguished by their Lorentz 
properties. We notice that 

x ' = L ^ x L ,  x - + x ' ~ x ' ^ = x  ', x~+{ f~ , i eo , e  o) (3.8) 

and L ' (eo)L  = (eo)L 'L  = (eo). Because L ^ = L v = Le, we also have L ' @ o ) L  = 
( ieo)L'L = (leo). Thus {f,} represents a &vector. This would indicate a prefer- 
ence for x"(f~)  and hence m2(Jo).  However, the third conjugation ( ) ' ,  of  
the set ( )^, ( ) t ,  ( )v, ( )v**, can be used to write 

x ' = L ' x L ,  x = + x - ~ x  'v =x' ,  x~÷ {i f# ,eo,  ieo} (3.9) 

and L ~ (ieo)L = (ieo)L ^L = (leo). Because L" = L ' ,  we also have L ' (eo)L  = 
(eo)L 'L = (eo)L 'L  = (eo). Thus {ifu} also represents a 4-vector! 

4. Conclusion 

The first conclusion we can draw is that Lorentz symmetry LL ~ = leo, 
L ^ = L v, has two natural generalizations, LL ^ = le o and L L  ~ = le o. These 
are isomorphic, though we have chosen LL v = le 0. As a result {eu} picks up 
(ifo) to form the 5-vectors. If  we had chosen LL ~ = le o, then {eg} would 
pick up (fo) to form the 5-vectors. Thus there is no way to choose between 
ml( i fo)  and m2(fo) .  If  nature is only Lorentz invariant, then particles in 
nature can exist with either kind of  invariant mass. This could be an important 
distinction, e.g., hadrons and leptons or such! 

The physical angular momentum operators which commute with H are 
[(fo)K] and [(fo)K] 2, with the eigenvalues k = +1, + 2 , . . .  and k 2 = 1, 4, 9 , . . . ,  
respectively. The third operator that commutes with these is j3, with 
eigenvalues (1/2, - 1/2}, {3/2, 1/2, - 1 / 2 ,  - 3 / 2 }  . . . .  = (Ikl - 1/2, 
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• .  • - (  t ki - 1/2) }. It is only here that half integers appear. This operator 
has no elegant form in the hypercomplex number language. In the past J 
was considered the physical operator but [(fo)K] is used in the relativistic 
equation and, therefore, should be useful in the nonrelativistic case• 

We have recently considered the gravity equation using this hypercomplex 
number formalism. It appears that 4-vector and 5-vector curvature equations 
can be readily accommodated in this language but not 6-vectors. Therefore, if 
we choose {eu, ifo ) for curved 5-space, then m I and rn 2 would have quite 
different relations to the full theory, since (ifo) becomes position dependent 
but (fo) remains independent of position. This may indicate that both mass 
types are important and physically quite distinct for curved space-time quantum 
theory• 

Finally, we note that (fo) does not commute with H and (fo) is the particle/ 
antiparticle operator, as can be seen in the free particle equation (2.4). There- 
fore, the hydrogen atom eigenstates are not particle/antiparticle eigenstates! 
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